DEFORMATION AND DISINTEGRATION OF LIQUID
DROPLETS IN A GAS FLOW

M. S. Volynskii and A. S, Lipatov UDC 541.18.053

A theory of elliptic deformation and disintegration of a droplet in a gas is given for sudden
application of the load. Experimental data on the determination of the critical Weber num-
bers for progressively increasing external forces are presented.

The laws of deformation and atomization of droplets by a gas flow are important in relation to the
study of flows in the nozzles and combustion chambers of jet engines, boilers, etc,

1. The elliptic deformation theory describes the process in a constant-velocity gas [1]. It is based
on the energy method and differs from other theories in that it takes into account the change in the flow over
the droplet resulting from deformation, Usually (for example, in inviscid theory [2]), the pressure distri-
bution on a sphere is employed. Let a stream of gas flow over a stationary droplet at a velocity U relative
to its center of mass, We make the following basic assumptions:

1) the flow of gas and the liquid within the droplet is assumed to be inviscid and potential;

2) the deformed droplet takes the shape of an ellipsoid of revolution with minor axis directed along the
gas-velocity vector,

3) evaporation of the droplet is disregarded,

The potential ¢ of the flow of incompressible liquid within the droplet satisfies the Laplace equation

Ap = 0. (1)
At the liquid surface with equation F($, A, r, 7) = 0 the boundary conditions (Neumann problem)
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are satisfied. The energyequationis written in the integral form
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The Neumann problem is solved approximately. The velocity potential is found in the form
2
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Expression (4) quite closely describes the process at small deformations. However, the results of
the solution can be extended (as in [2]) to large deformations.

The work done by the external forces is calculated from the usual equation for the hydrodynamic pres-
sure distribution on an ellipsoid with semiaxis ratio n= b/c (see [3]).

The expression for the work done by the pressure forces takes the form
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" is the droplet surface equation .

The energy of the surface tension forces Ilg is expressed in terms of the surface area of the ellipsoid

W yEia, (6)

M, =0(S—S) S=

We introduce dimensionless time ¢ in accordance with the relation
ary
= Pa
T =
gl » l/

Substituting in the energy equation the expressions for II, and Iy, we obtain the equation for the de-
formation of the 11qu1d ellipsoid in the gas flow
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In the limit as n —~ = the second term of the equation tends to —n®/We, and the third term to n!%/3,

Consequently, there is a deformation "energy barrier,"” at We > Wegr, where Weer is a characteristic
constant of the process, at which the work done by the external forces tends to infinity,

The results of a numerical integration of Eq. (7) are presented in Fig. 1,

The golutions may be divided into two families: at small We the deformations are oscillatory in char-
acter, at large We they are aperiodic, as the droplet tends to an infinitely thin ellipsoid.*

The characteristic Weber number separating these families is given by the inequality 5.4055 < Wegy
< 5.408 and may be interpreted as the critical value; it corresponds to a semiaxis ratio of 3,75. The thin-
ning liquid disk is unstable and is broken up by small perturbations. Spark photographs of droplets at high
postcritical Weber numbers show that their shape approaches that of a digk, from which the crests of waves
of growing amplitude are observed to separate,

In [4] Wegy is determined from the condition of loss of static stability of a stationary liquid ellipsoid.
It occurs at We = 3,75 and n = 8,

In our dynamic model Weer is found to be greater at a smaller semiaxis ratio, The result given by
the theory determines the lower limit of We numbers corresponding to large Reynolds numbers Re = 108,
where the flow is close to potential and the liquid inviscid, For these conditions the Isshiki theory [2] gives
Wecr = 5.3,

Figure 1 shows that as We — « there is 2 minimum dimensionless deformation time £y, = 0.8 (which

is of the same order as the critical deformation time in experiments with inviscid droplets at various Re).
For this case Isshiki obtains 1.1.

2. Our experimental procedure for investigating the atomization of a droplet in the presence of smooth~
ly increasing external forces was as follows. The droplet generator ejected (almost without initial velocity)
individual droplets of known size. At the outlet they entered a free stream of air, moving in the variable-
velocity zone of its boundary layer (see Fig. 2).

* Under certain conditions the pressures p in the high-curvature zones of the ellipsoid may become negative;
naturally, only physically realistic solutions at p > 0 are considered.
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TFig. 1. Development of the deformation in time at various Weber numbers:

1) We = 4; 2) 5; 3) 5.3; 4) 5.4; 5) 5.4055; 6) 5.408; 7) 5.42; 8) 5.44; 9) 5.5; 10)

6;11) 7;12) 10; 13) 15; 14) 30.

Fig. 2, Motion of droplet in a free jet of initial radius R¢: V is the droplet
velocity; Wx and Wy are the gas velocity components; W is the gas velocity
on the jet axis.

The exit velocity was increased, until atomization of the droplet was confirmed by two independent
methods — by photography and by trapping on special screens (for details on the operating principle of the
droplet generator and the experimental procedure see [5]).*

In order to determine the Weber number from the relative velocity of the droplet as a function of time
we numerically integrated the equation of motion, in which aerodynamic and gravitational forces were taken
into account. In vector form it may be written (Fig. 2)

n av ey W — V| (W — V) +-mg,
dt 2
g} = 9.81 m ssec*. 8)

The gas velocity components Wy, Wy, known functions of the complex Z, are determined from free-
jet theory [6] (under our experimenfal conditions the jet may be considered plane)
y—Ri4xtgoy
x(tgay +tgay)
In our case Rt = 75 mm; oy = 7°10; @y = 8°20; the functions Wx and Wy depend importantly on the y
coordinate, but it is possible to disregard the variation of x, setting x=x; (Fig. 2), % = 15 mm.

The drag coefficient of the droplet is assumed constant, although in reality, it varies. Initially (low
gas velocities) the droplet is almost in free fall (its velocity on entering the jet Vy ~ 0.4 m/sec).

In the zone of high relative velocities, where deformation chiefly develops, the order of the Reynolds
numbers Re =300-1200, and the cx of a sphere varies in the interval 0.4-0.6; accordingly we may take cx
~ 0.5,

Allowing for deformation, when in the critical stage the droplet is almost ellipsoidal with & semiaxis
ratio of 4-6, we may roughly estimate cx as the mean of the values for a sphere and a disk 0.4 =cx =1.
We take cx =~ 0.7; 0.5.

We estimate the area fj, of the mid-section of the deformed droplet as the mean of the area of the
sphere fg and the ellipsoid in the critical phase; then fm »~ 2fg. The equation of motion (8) and the relations

* We note in passing that, in the present opinion of the author, the theoretical interpretation of the experi-
mental data of [5] is not quite correct. The entrainment of the droplet in the boundary layer is not taken
into account. However, the procedure and all the results relating to atomization velocities remain valid.
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for Wx and Wy reduce to three equations in Vy, Vy, and 1, unknown functions of the complex Z, After
solving this system on a computer, we find the relative velocity of the droplet and the Weber number ag
functions of time.

The critical Weber number Weer was calculated from the maximum relative velocity of the droplet
in the atomization regime, This velocity is reached at the edge of the boundary layer, Atomization takes
place at a Weber number close fo that calculated, since at lower gas velocities disintegration of the drop-
let is not observed., ’

The possible fall of the Weber number in the core of the free jet is relatively small (less than 20%).
The deformation time was found to be an order greater than the critical time Tor corresponding to a sudden
application of the load. It may be assumed that the process is almost quasi-stationary, when a progressive
increase in the external forces yields a small deformation increment and the inertia forces of the internal
motions in the droplet can be neglected; the state of deformation is then determined by the instantaneous
Weber number irrespective of the previous history of the process.

For quasi-stationary deformation the number We.y is the upper limit of the atomization criterion and
should exceed the critical number for a suddenly applied load.

In Fig. 3 we have plotted the theoretical dependence of the Weber number on dimensionless time 7
/ Ter for dropletsofaleohol with different diameters 2r,. This ratio gives a measure of the difference be-~
tween the slow process and the case of a suddenly applied load with u=W,

In accordance with the expression for 7qy (see [6])

Ty /68 9

L. Ery 04
The experimental data give £ = 3, The dots on the curves correspond to the critical values of the Weber
numbers, which lie on the dashed curve.

The process is the closer to being quasi-stationary, the smoother the variation of the Weber number,
i.e., the less the gradient dWe /d(7 /Tcr), which falls as the diameter decreases.

1t may be assumed that the value of Wegy for the quasi-stationary process (it corresponds to the
asymptote of the Weer curve) is 22-24 at cx ~ 0.5-0.7 i.e., on this interval the value of cx has little effect

on Wecy .

For droplets of inviscid liquids such as alcohol, water, etc., of diameter 2r; = 2000 p the deforma-
tion on entering the free jet takes place under conditions of almost instantaneous application of the load.
Apparently, for droplets of viscous liquids (for example, glycerin) the values of Wecr (see 2, T]) for grad-
ual and instantaneous application of the load are much the same owing to the viscosity effect.

After completing their investigation the authors became acquainted with the work of Gordin et al {8],
which is similar in principle and technique to section 1 of the present article, Like our own work, that of
Gordin et al is exceptional in taking into account the variation of the forces and interpreting the critical
Weber number Weer as a dynamic instability parameter. However, our theory is distinctive in the follow-
ing respects: 1) the kinetic energy of the liquid in the droplet is not calculated in the same way as in [8];

2) another method of solution, giving the behavior of the deformation in oscillatory and aperiodic regimes,
is employed; 3) the minimum deformation time ag We — « is determined; 4) finally, our value Weer =~ 5.406
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ig in agreement with the data of [2] and exceeds the static stability criterion of [4]. Gordin et al.[8] give
Weer =~ 3.3, which is less than the static stability criterion,

NOTATION
We=2rpUl/¢  is the Weber number;
Weer is the critical Weber number;
Re = 2rqu/v is the Reynolds number;
Cx is the drag coefficient;
v, V4 are the potential and velocity of the liquid in the droplet;
pgr pd are the densities of the gas and the droplet;
U is the volume of the droplet;
P, Py are the static and capillary pressures;
Px is the sum of the static and capillary pressures;
o is the surface tension;
T is the time;
Ve is the frontal-point velocity;
u is the relative gas velocity;
T, ig the initial radius of the droplet;
I, AT are the spherical coordinates in the system fixed in the center of mags of the droplet;
b,c are the semimajor and semiminor axes of the droplet;
¥,8,8 are the surface equation of the droplet and its area in the deformed and initial states;
P, is the second~order Legendre polynomial;
X, Y are the fixed coordinates;
Wx, Wy, Vx, Vy  are the components of the gas and particle velocities;
Rt is the tube radius;
fm is the area of the mid-section of the droplet;
m is the particle mass;
W is the gas velocity on the jet axis;
v ig the kinematic viscosity of the gas;
N is the normal to the droplet surface;
W,V are the velocities of the gas and the center of mass of the droplet;
g is the acceleration of gravity.
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