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A theory of elliptic deformation and disintegration of a droplet in a gas is given for sudden 
application of the load. Experimental data on the determination of the critical Weber num- 
bers for progressively increasing external forces are presented. 

The laws of deformation and atomization of droplets by a gas flow are important in relation to the 
study of flows in the nozzles and combustion chambers of jet engines, boilers, etc. 

i. The elliptic deformation theory describes the process in a constant-velocity gas [i]. It is based 
on the energy method and differs from other theories in that it takes into account the change in the flow over 
the droplet resulting from deformation. Usually (for example, in inviscid theory [2]), the pressure distri- 
bution on a sphere is employed. Let a stream of gas flow over a stationary droplet at a velocity U relative 

to its center of mass. We make the following basic assumptions: 

i) the flow of gas and the liquid within the droplet is assumed to be inviscid and potential; 

2) the deformed droplet takes the shape of an ellipsoid of revolution with minor axis directed along the 

gas-velocity vector. 

3) evaporation of the droplet is disregarded. 

The potential q~ of the flow of incompressible liquid within the droplet satisfies the Laplace equation 

A~ ---- 0. (1) 

At  the liquid su r face  with equation F(~, Z, r ,  T) = 0 the boundary conditions (Neumann problem)  
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a r e  sa t is f ied .  The energy equation is written in the integral form 

d . P.:d~ Vd VNdS. 
d---~- S z e  d U = ~  pz (3) 

U 

The Neumarm p rob lem is solved approx imate ly .  The veloci ty  potential  is found in the fo rm 

t" 2 Vc(~) --/P~(c~ 8). (4) 
qD = ~ ro / 

Expression (4) quite closely describes the process at small deformations. However, the results of 

the solution can be extended (as in [2]) to large deformations. 

The work done by the external forces is calculated from the usual equation for the hydrodynamic pres- 

sure distribution on an ellipsoid with semiaxis ratio n = b/c (see [3]), 

The expression for the work done by the pressure forces takes the form 

Trans l a t ed  f rom Inzhene rno-F iz i ehesk i i  Zhurnal ,  Vol. 18, No. 5, pp. 838-843, May, 1970. O r i g i -  
nal a r t i c l e  submi t ted  July 23, 1969. 

�9 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West i7th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

579 



tl  

1-I ---- 2ar~pru~ -~- A (~}) h 2 Oh d (cos~}) dn, 
On 

1 

V ~  - -  1 - -  arc tg V ~  - -  1 
? = I +  

dn -~-:- 1 
are sinV 1 - -  n -2 

rt ~ 

=3,14, h=.r(n'~) 
ro 

~ ,  A(O)= sin~O , (5) 
sin2@ +n~cos 2 

is the droplet surface equation 

The energy of the sur face  tension forces  IIa  is e x p r e s s e d  in t e r m s  of the sur face  a r e a  of the el l ipsoid 

H o = a ( S - S o ) ;  S =  4~---~b Vb~+c~, ~ -  (6) 

We introduce dimensionless  t ime ~ in accordance with the relat ion 

v -b-/g" 

Substituting in the energy  equation the express ions  for  II a and l i e ,  we obtain the equation for the de -  
fo rmat ion  of the liquid ell ipsoid in the gas flow 

dZn = 1.67 dn 2 _ 3,75nT7~ 3 3 
d~' n WeVn-~-+ 1 ~ + (n 2 -  1) - - - - ~  

_ a r c t g V r ~  [ 1 + 4 3' ]} 
]#n 2-:-~- 1 ( n2 - -  1) a/2 + (n' --1) s/e " (7) 

In the l imi t  as  n -~ ~ the second t e r m  of the equation tends to - n a / W e ,  and the third t e r m  to n13/3. 

Consequently,  there  is a de format ion  "energy b a r r i e r , "  a t  We > Wecr ,  where  Wecr  is a cha rac t e r i s t i c  
constant  of the p r o c e s s ,  a t  which the work  done by the external  fo rces  tends to infinity. 

The  r e su l t s  of a numer ica l  in tegra t ion  of Eq. (7) a r e  p r e sen t ed  in Fig.  1. 

The solutions may  be divided into two fami l ies :  at  smal l  We the deformat ions  a r e  osc i l l a to ry  in c h a r -  
a c t e r ,  a t  l a rge  We they a r e  aper iod ic ,  as  the drople t  tends to an infinitely thin el l ipsoid.* 

The c h a r a c t e r i s t i c  Weber  number  separa t ing  these  fami l i es  is given by the inequality 5.4055 < Wecr  
< 5.408 and may  be in te rpre ted  as the c r i t i ca l  value;  i t  co r r e sponds  to a semiax is  ra t io  of 3.75. The thin-  
ning liquid disk is unstable  and is broken  up by smal l  pe r tu rba t ions .  Spark photographs of drople ts  a t  high 
pos tc r i t i ca l  Weber  numbers  show that the i r  shape approaches  that of a disk,  f rom which the c r e s t s  of waves  
of growing ampli tude a r e  obse rved  to s epa ra t e .  

In [4] Wecr  is de te rmined  f rom the condition of loss  of s ta t ic  s tabi l i ty  of a s ta t ionary  liquid el l ipsoid.  
I t  occurs  a t  We = 3.75 and n = 6. 

In our dynamic model  Wecr  is found to be g r e a t e r  at  a s m a l l e r  semi~xis  ra t io .  The r e su l t  given by 
the theory  de t e rmines  the lower  l imi t  of We numbers  cor responding  to l a rge  Reynolds number s  Re _> 10 ~, 
where  the flow is c lose  to potential  and the liquid inviscid.  F o r  these  conditions the I ssh ik i  theory  [2] gives 

Wecr  = 5.3. 

F igu re  1 shows that as  We --~ oo there  is a min imum d imens ion less  deformat ion  t ime  ~min = 0.8 (which 
is of the s ame  o rde r  as  the c r i t i ca l  de format ion  t ime  in exper imen t s  with inviscid droplets  at  var ious  Re). 
Fo r  this case  I ssh ik i  obtains 1.1. 

2. Our exper imenta l  p rocedu re  for  invest igat ing the a tomizat ion  of a drople t  in the p r e s e n c e  of smoo th -  
ly inc reas ing  external  fo rces  was as follows. The drople t  genera to r  e jected (a lmost  without initial  velocity) 
individual d rople t s  of known s ize .  At the outlet  they entered  a f ree  s t r e a m  of a i r ,  moving in the v a r i a b l e -  
veloci ty  zone of i ts  boundary l ayer  (see Fig.  2). 

* Under ce r t a in  conditions the p r e s s u r e s  p in the h igh -cu rva tu re  zones of the el l ipsoid may  become  negat ive;  
na tura l ly ,  only physica l ly  r ea l i s t i c  solutions a t  p > 0 a r e  cons idered .  
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Fig. i, Development of the deformation in time at various Weber numbers: 
i) We ~- 4; 2) 5; 3) 5.3; 4) 5.4; 5) 5.4055; 6) 5.408; 7) 5.42; 8) 5.44; 9) 5,5; i0) 
6; ii) 7; 12) i0; 13) 15; 14) 30. 

Fig. 2, Motion of droplet in a free jet of initial radius Rt: V is the droplet 
velocity; Wx and Wy are the gas velocity components; W is the gas velocity 
on the jet axis.  

The exit vMocity was increased ,  until a tomizat ion of the droplet  was confirmed by two independent 
methods - by photography and by trapping on special sc reens  (for details on the operat ing principle of the 
droplet  genera tor  and the experimental  p rocedure  see [5]).* 

In o rder  to determine the Weber number from the relat ive velocity of the droplet  as a function of time 
we numer ica l ly  integrated the equation of motion, in which aerodynamic  and gravitational forces were taken 
into account. In vector form it may be written (Fig. 2) 

dV czpgim [W -- V I (W -- V)+rag, 
m - -  = 

dv 2 
[gl --~ 9.81 m/see". (8) 

The gas veIocity components Wx, Wy, known functions of the complex Z, a re  determined f rom f r e e -  
jet theory  [6] (under our ex~perimental conditions the jet may  be considered plane) 

Z =  Y- -R t  @xtg~l  
x (tg a s + tg gl) 

In our ease Rt = 75 mm;  a t = 7~ a2 = 8~ the functions Wx and Wy depend importantly on the y 
coordinate ,  but it is possible to d i s regard  the variat ion of x, setting x = N (Fig. 2), x t = 15 mm. 

The drag coefficient of the droplet  is assumed constant,  although in real i ty ,  it var ies .  Initially (low 
gas velocities) the droplet  is a lmost  in f ree fall (its velocity on entering the jet Vy ~ 0.4 m / s e e ) .  

In the zone of high relat ive veloci t ies ,  where deformation chiefly develops, the order  of the Reynolds 
numbers  Re =300-1200, andthe Cx e r a  sphere var ies  in the interval  0.4-0.6; accordingly we may take ex 

0.5. 

Allowing for deformation,  when in the cr i t ical  stage the droplet  is a lmost  ellipsoidaI with a semiaxis  
rat io of 4-6 ,  we may roughly est imate Cx as the mean of the values for a sphere and a disk 0.4 -< Cx -< 1. 

We take ex ~ 0.7; 0.5. 

We est imate  the a rea  fm of the mid-sec t ion  of the deformed droplet  as the mean of the a rea  of the 
sphere  fs andthe  eI l ipsoidtn the cr i t ica l  phase;  then fm ~ 2fs. The equation of motion (8) and the relat ions 

* We note in pass ing that, in the presen t  opinion of the author,  the theoretical  interpretat ion of the exper i -  
mental data of [5] is not quite co r rec t .  The entrainment  of the droplet  in the boundary Iayer  is not taken 
into account.  However,  the procedure  and all the resul ts  relat ing to atomizat ion velocities remain  valid. 
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Fig. 3. Weber  numbers  We for a p rogress ive  
increase  in the external forces  acting on a d rop-  
let  of d iameter  2r 0 with various drag coeffi-  
cients Cx: a) Cx = 0.5; 1) 2r  0 = 800 ~ ; 2) 600; 3) 
300; 4)250); b)c  x = 0.7; 5) 2r 0 = 800 # ; 6) 600; 
7) 300; c) curve of cr i t ical  Weber numbers  Wecr .  

for Wx and Wy reduce to three equations in Vx, Vy, and r ,  unknown functions of the complex Z. After  
solving this sys tem on a computer ,  we find the relat ive velocity of the droplet  and the Weber number as  
functions of t ime. 

The cr i t ical  Weber number Wecr  was calculated f rom the maydmum relat ive velocity of the droplet 
in the a tomizat ion regime.  This velocity is reached at  the edge of the boundary layer .  Atomization takes 
place at a Weber number close to that calculated, since at lower gas velocit ies disintegration of the d rop-  
let  is not observed.  

The possible fall of the Weber number in the core  of the free jet is relat ively small  (less than 20%). 
The deformation t ime was found to be an order  g rea te r  than the cr i t ical  t ime Tcr corresponding to a sudden 
application of the load. It  may be assumed that the p roces s  is a lmos t  quas i -s ta t ionary ,  when a p rogress ive  
increase  in the external forces  yields a small  deformation increment  and the inertia forces  of the internal 
motions in the droplet  can be neglected; the state of deformation is then determined by the instantaneous 
Weber number i r respec t ive  of the previous h is tory  of the p rocess .  

For  quas i -s ta t ionary  deformation the number Wecr  is the upper l imit  of the atomization c r i t e r ion  and 
should exceed the cr i t ical  number for a suddenly applied load. 

In Fig. 3 we have plotted the theoret ical  dependence of the Weber number on dimensionless  t ime ~- 
/ T c r  for drople tsofa lcohol  with different d iameters  2r 0. This rat io gives a measure  of the difference be-  
tween the slow p roces s  and the case of a suddenly applied load with u = W. 

In accordance  with the express ion for Ter (see [6]) 

The ehoerimental  data give ~ = 3. The dots on the curves  correspond to the cr i t ical  values of the Weber 
numbers ,  which lie on the dashed curve.  

The p rocess  is the c loser  to being quas i -s ta t ionary ,  the smoother  the var ia t ion of the Weber number,  
i .e . ,  the less  the gradient d W e / d ( T / T c r ) ,  which falls as  the d iameter  decreases .  

It may  be assumed that the value of Wecr  for the quas i -s ta t ionary  p rocess  (it cor responds  to the 
asymptote  of the Wecr  curve) is 22-24 at  Cx ~ 0.5-0.7 i .e . ,  on this interval the value of ex has little effect 

on Wecr  . 

Fo r  droplets  of inviseid liquids such as alcohol,  water ,  etc. ,  of d iameter  2r 0 >- 2000 tt the de fo rma-  
tion on entering the free jet takes place under conditions of a lmos t  instantaneous application of the load. 
Apparent ly,  for droplets  of viscous liquids (for example,  glycerin) the values of Weer (see [2, 7]) for g rad-  
ual and instantaneous application of the load a re  much the same owing to the viscosi ty  effect. 

Af ter  completing their investigation the authors became acquainted with the work of Gordin et al [8], 
which is s imi lar  in principle and technique to sect ion 1 of the presen t  ar t ic le .  Like our own work,  that of 
Gordin et al  is exceptional in taking into account the var ia t ion of the forces  and interpret ing the cr i t ical  
Weber number Wecr  as  a dynamic instability pa rame te r .  However,  our theory is distinctive in the follow- 
ing respec t s :  1) the kinetic energy of the liquid in the droplet  is not calculated in the same way as in [8]; 
2) another method of solution, giving the behavior of the deformation in osc i l la tory  and aperiodic reg imes ,  
is employed; 3) the minimum deformation t ime as We - -  r162 is determined;  4) finally, our value Wecr  ~ 5.406 
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is in agreement with the data of [2] and exceeds the static stability criterion of [4]. Gordin et al. [8] give 
Wecr ~ 3.3, which is less than the static stability criterion. 

We = 2ropU2/a 

Wecr 
Re = 2roU / v 
Cx 
~o, V d 

Pg, Pd 
U 

P, P~ 
P~ 

T 

Vc 

r 0 
d, ~, r 
b, c 
F,S, S 0 

P2 
x,y 

W x, Wy, Vx, Vy 

Rt 
fm 
m 
W 
p 

N 
W, V 
g 

NOTATION 

is the Weber number; 
is the critical Weber number; 
is the Reynolds number; 
is the drag coefficient; 
are the potential and velocity of the liquid in the droplet; 
are the densities of the gas and the droplet; 
is the volume of the droplet; 
are the static and capillary pressures; 
is the sum of the static and capillary pressures; 
is the surface tension; 
is the time; 
is the frontal-point velocity; 
is the relative gas velocity; 
is the initial radius of the droplet; 
are the spherical coordinates in the system fixed in the center of mass of the droplet; 
are the semimajor and semiminor axes of the droplet; 
are the surface equation of the droplet and its area in the deformed and initial states; 
is the second-order Legendre polynomial; 
are the fixed coordinates; 
are the components of the gas and particle velocities; 

is the tube radius; 
is the area of the mid-section of the droplet; 
is the particle mass; 
is the gas velocity on the jet axis ; 
is the kinematic viscosity of the gas; 
is the normal to the droplet surface; 
are the velocities of the gas and the center of mass of the droplet; 

is the acceleration of gravity. 

. 

2. 

3. 

4, 

5. 

6o 

7. 

8. 
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